

Microbial Biological Control of Arthropods, Weeds, and Plant Pathogens: Risks, Benefits and Challenges

Pre-release Evaluation of Candidate Microbials

Physiological vs. Ecological Host Range

William L. Bruckart, III USDA, ARS, FDWSRU Ft. Detrick, MD

Why me?

- Personal experience
- · Personal interest
- Importance in own program
- · Some modicum of success

Why me?

- · Common theme w/friends, incl.
 - "The Regulators"
 - Entomologists, and
 - Wife at dinner time
- Lead into the next talk

Why this meeting?

- Fundamental part of agent development
 - Basic info in decisions about release,
 - Consumes most resources and time
- Occurs regularly.
- Major grappling point for
 - Scientists, and
 - Regulators
- · Not a new issue, but it persists ...

Where is it important in BC by microbes?

- Exotic agents
 (classical control)
- Domestic agents

 (biopesticide application)
- BC diseases?
 (ecologically based)

What are we talking about?

Effect of artificial tests to determine which species may serve as host of a candidate biological control agent.

The Microbial Containment Greenhouse USDA-ARS-FDWSRU

- 1. 10,000 sq ft
 (7,500 under glass)
- 2. Entirely microbial
- 3. Two research missions

What are we talking about?

Ecological host range: that complement of species able to support development of a parasite or pathogen in nature.

What are we talking about?

Physiological host range: that complement of species able to support development of a parasite or pathogen under artificial (optimal or unnatural) test conditions.

Ecological vs. Physiological: What's the difference?

Removal of naturallyoccurring constraints to encounter, attack, and development by parasites or pathogens.

Ecological vs. Physiological: What's the difference?

Addition of unnatural conditions

- Susceptible stage of test
 species
- High conc. of candidate agent
- Optimal placement of candidate
- Unnatural "opportunities" in tests

Ecological vs. Physiological: What's the difference?

Changes in tests from natural conditions often result in a larger list of species identified as capable of supporting a parasite or pathogen

What are we talking about?

- > Interpretation of data
- Facilitating decision process by regulators.
- > Determining true host range.
- > Safety
 - = Host specificity

Controlling Risk ...

- Considering R = H x E, and
- Exposure (E) is assumed with foreign candidate organisms,
- Hazard (H) needs to be zero, or nearly so.

 Host specificity in a BC candidate eliminates Hazard.

Framework and Perspectives

- · Not a new issue
- Many excellent papers by*:
 - Harris, Zwolfer (1968, 1971)
 - Wapshere (1974, 1989)
 - Watson (1984)
 - Evans (2000)
 - Briese (2005)
 - <u>Berner et al.</u> (2009)

*Among Others
Name = Microbiologist

Solutions(?)

- Field tests:
 - More practical for evaluating domestic biopesticide agents.
 - May be an issue overseas, if native N.
 Am species are tested.
- Physiol. study of susceptible rxn.
- Comparisons with species related to the candidate agent.
- Improved methods of analysis and prediction.

Examples

- Puccinia carduorum vs. musk thistle
- P. jaceae vs. yellow starthistle (YST)
- Synchytrium solstitiale vs. YST
- Uromyces salsolae vs. Russian thistle

Puccinia jaceae and Yellow starthistle

Puccinia jaceae for Biological Control of Yellow Starthistle

"Non-Target Effects"

Resistant reaction on a related species, diffuse knapweed (DK)

P. jaceae Versus P. carthami
On Safflower

Safflower Grower's Question: <u>Can Puccinia jaceae</u> infect <u>safflower seedlings?</u>

P. jaceae teliospore (t), basidium (b) and germinating basidiospores (bsp).

Canker on safflower hypocotyl after *P. carthami* teliospore infestion.

The Answer ...

"NO"

Puccinia carthami in a safflower hypocotyl

Safflower plants inoculated by *Puccinia carthami* or *P. jaceae*

Synchytrium solstitiale

False Rust on Yellow Starthistle

Synchytrium solstitiale

Inoculation of Yellow Starthistle

Synchytrium solstitiale

Safflower, 'CW 99-OL'

Yellow Starthistle

Controls Inoc.

Ecological vs. Physiological:

Potential New Association?

Ecological hosts?

Or

Physiological hosts?

Uromyces salsolae

Salisola tragus

Suaeda californica

Salicornia virginica (= 5. depressa)

Ecological vs. Physiological:

Potential New Association?

Ecological hosts?

Or

Physiological hosts?

Ecological vs. Physiological?

Uromyces giganteus on
Suaeda californica
U. peckianus on
Salicornica virginica

Conclusions

- Much time and effort go into HRD.
- Challenges include:
 - Getting material to test.
 - Getting test material to grow.
 - Realistic tests.

Conclusions

 Scientists make judgment about safety before making proposals.

HRD is made under a microscope; i.e.,
 often looking at fine detail.

Conclusions

- Some response data from artificial tests difficult to interpret for field scenarios.
- No matter how much information is developed, there will be risk associated with every decision.

Questions?